
API for RF receivers including ThinkRF
RTSA platforms

ThinkRF Corporation

Nov 23, 2018

Contents

1 Overview 3

2 Table of Contents 5
2.1 Manual . 5
2.2 Reference . 7
2.3 Examples . 19
2.4 Change Logs . 21

3 Hardware Support 31

4 Links 33

5 Indices and Tables 35

Python Module Index 37

i

ii

API for RF receivers including ThinkRF RTSA platforms

Contents 1

API for RF receivers including ThinkRF RTSA platforms

2 Contents

CHAPTER 1

Overview

PyRF is an openly available, comprehensive development environment for wireless signal analysis. PyRF handles the
low-level details of configuring a device, real-time data acquisition and signal processing, allowing you to concen-
trate on your analysis solutions. Hence, it enables rapid development of powerful applications that leverage the new
generation of measurement-grade software-defined radio technology, such as ThinkRF Real-Time Spectrum Analysis
Software.

PyRF is built on the Python Programming Language (v2.7) and includes feature-rich libraries, examples including
visualization applications and source code, all specific to the requirements of signal analysis. It is openly available,
allowing commercialization of solutions through BSD open licensing and offering device independence via standard
hardware APIs.

3

https://www.thinkrf.com/s240-real-time-spectrum-analysis-software/
https://www.thinkrf.com/s240-real-time-spectrum-analysis-software/
https://www.python.org/

API for RF receivers including ThinkRF RTSA platforms

4 Chapter 1. Overview

CHAPTER 2

Table of Contents

2.1 Manual

2.1.1 Installation

This section provides information on how to install the required python packages.

Note: Python v2.7.x is the required version for PyRF, not v3.x or higher.

Windows Setup

1. Set-up Python v2.7

• Install Python v2.7 from https://www.python.org/downloads/release/python-2715/

• Add to the windows PATH: C:\Python27 and C:\Python27\Scripts

2. Install Dependencies

These installation steps make use of pip software to install required libraries. Open a command prompt
window and type pip, if a help menu appears, pip is already in your system. If pip has not yet been
installed, follow these instructions:

• Download get-pip.py (right mouse click and save)

• Open a command prompt window, navigate to get-pip.py and run:

5

https://www.python.org/downloads/release/python-2715/
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://bootstrap.pypa.io/get-pip.py

API for RF receivers including ThinkRF RTSA platforms

python get-pip.py

• Now use pip to install the dependencies by typing into the command prompt window:

pip install numpy scipy pyside==1.2.2 pyqtgraph twisted zope.interface
→˓setuptools pywin32
pip install netifaces

Notes:

• pySide v1.2.2 is needed, not the latest

• When installing netifaces, MS Visual C++ 9.0 is required, follow the recommended
instruction, such as error: Microsoft Visual C++ 9.0 is required. Get
it from http://aka.ms/vcpython27

• To install qtreactor, choose one of the following option:

• If you have git, run:

pip install -e git://github.com/pyrf/qtreactor.git#egg=qtreactor

• Otherwise, download qtreactor-pyrf-1.0 to your computer, unzip and then go into the extracted folder
in a command prompt window and type:

python setup.py install

Continue with PyRF Installation below.

Linux Setup

These instructions are tested on Debian/Ubuntu system, equivalent apt-get command might be needed for
your system.

• Install python2.7 package if not already available in your system

• Install required libraries (sudo privilege might be needed):

apt-get install pip
pip install numpy scipy pyside==1.2.2 pyqtgraph twisted netifaces zope.
→˓interface setuptools
pip install -e git://github.com/pyrf/qtreactor.git#egg=qtreactor

• Or install dependencies from source:

apt-get install qt-sdk python-dev cmake libblas-dev libatlas-dev
→˓liblapack-dev gfortran
export BLAS=/usr/lib/libblas/libblas.so
export ATLAS=/usr/lib/atlas-base/libatlas.so
export LAPACK=/usr/lib/lapack/liblapack.so
pip install -r requirements.txt
pip install pyside==1.2.2

Continue with PyRF Installation below.

PyRF Installation

• Download the development version by either:

6 Chapter 2. Table of Contents

https://git-scm.com/
https://github.com/pyrf/qtreactor/releases

API for RF receivers including ThinkRF RTSA platforms

• Using git and run:

git clone git://github.com/pyrf/pyrf.git

• Or download a stable release here and extract

• Navigate to pyrf directory (cd pyrf), run:

python setup.py install

2.1.2 PyRF API for ThinkRF RTSA Products

pyrf.devices.thinkrf.WSA is the class that provides access to ThinkRF Real-Time Spectrum
Analyzers (RTSA, also formerly known as WSA) devices. Its methods closely match the SCPI Command
Set described in the product’s Programmer’s Guide (available on ThinkRF Resources).

There are simple examples illustrating usage of this API under the examples directory included with the
source code directory. Some are mentioned in the Examples section of this document .

This API may be used in a blocking mode (the default) or in an asynchronous mode with using the
Twisted python library.

In blocking mode, all methods that read from the device will wait to receive a response before returning.

In asynchronous mode, all methods will send their commands to the device and then immediately return
a Twisted Deferred object. If you need to wait for the response or completion of this command, you can
attach a callback to the Deferred object and the Twisted reactor will call it when ready. You may choose to
use Twisted’s inlineCallbacks function decorator to write Twisted code that resembles synchronous
code by yielding the Deferred objects returned from the API.

To use the asynchronous, when a WSA instance of a device (ex. dut = WSA()) is created, you must
pass a pyrf.connectors.twisted_async.TwistedConnector instance as the connector pa-
rameter, as shown in discovery.py / twisted_discovery.py

2.2 Reference

2.2.1 pyrf.devices

.thinkrf

class pyrf.devices.thinkrf.WSA(connector=None)
Interface for ThinkRF’s R5500, R5700, and WSA5000 (EOL).

Parameters connector – Connector object to use for SCPI/VRT connections, defaults
to a new PlainSocketConnector instance

connect() must be called before other methods are used.

Note: The following methods will either block then return a result or if you passed a
TwistedConnector instance to the constructor, they will immediately return a Twisted Deferred
object.

The methods are grouped and listed by functionalities.

Connection Related Methods:

2.2. Reference 7

https://git-scm.com/
https://github.com/pyrf/pyrf/releases
https://www.thinkrf.com
https://www.thinkrf.com
http://www.thinkrf.com/resources
https://twistedmatrix.com/

API for RF receivers including ThinkRF RTSA platforms

connect(host)
Connect to an RTSA (aka WSA).

Parameters host (str) – the hostname or IP to connect to
Usage:

dut.connect('123.456.789.1')

disconnect()
Close a connection to an RTSA (aka WSA).

async_connector()
Return True if the connector being used is asynchronous

set_async_callback(callback)
Set the asynchronous callback for a function when the device receives a VRT packet.
Use with Twisted setup. :param callback: callback to set. Set to None to disable
receiving packets.

Direct SCPI commands:

scpiget(cmd)
Send a SCPI query command and wait for the response.

This is the lowest-level interface provided. See the product’s Programmer’s Guide for
the SCPI commands available.

Parameters cmd (str) – the SCPI command to send
Returns the response output from the box if any

scpiset(cmd)
Send a SCPI command of set type (i.e. not query command).

This is the lowest-level interface provided. See the product’s Programmer’s Guide for
the SCPI commands available.

Parameters cmd (str) – the command to send

errors()
Flush and return the list of errors from past commands sent to the RTSA. An empty
list is returned when no errors are present.

Device System Related:

id()
Returns the RTSA’s identification information string.

Returns “<Manufacturer>,<Model>,<Serial number>,<Firmware version>”
reset()

Resets the RTSA to its default configuration. It does not affect the registers or queues
associated with the IEEE mandated commands.

locked(modulestr)
This command queries the lock status of the RF VCO (Voltage Control Oscillator) in
the Radio Front End (RFE) or the lock status of the PLL reference clock in the digitizer
card.

Parameters modulestr (str) – ‘VCO’ for rf lock status, ‘CLKREF’ for ref
clock lock status

Returns True if locked

Data Acquisition Related Methods:

• Get permission:

8 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

has_data()
Check if there is VRT data to read.

Returns True if there is a packet to read, False if not
request_read_perm()

Acquire exclusive permission to read data from the RTSA.
Returns True if allowed to read, False if not

have_read_perm()
Check if we have permission to read data from the RTSA.

Returns True if allowed to read, False if not

• Set capture size for stream or block mode capture:

ppb(packets=None)
This command sets the number of IQ packets in a capture block

Parameters packets (int) – the number of packets for a block of
capture, or None to query

Returns the current ppb value if the packets parameter is None
spp(samples=None)

This command sets or queries the number of Samples Per [VRT] Packet
(SPP).

The upper bound of the samples is limited by the VRT’s 16-bit packet size
field. However, since the SPP must be a multiple of 32, the maximum is thus
limited by (2**16 - 32) or 65504.

Parameters samples (int) – the number of samples in a VRT packet
(256 to 65504, a multiple of 32), or None to query

Returns the current spp value if the samples parameter is None

• Stream setup

stream_status()
This query returns the current running status of the stream capture mode.

Returns ‘RUNNING’ or ‘STOPPED’
stream_start(stream_id=None)

This command begins the execution of the stream capture. It will also initiate
data capturing. Data packets will be streamed (or pushed) from the RTSA
whenever data is available.

Parameters stream_id (int) – optional unsigned 32-bit stream
identifier

stream_stop()
This command stops the stream capture. After receiving the command, the
RTSA system will stop when the current capturing VRT packet is completed.
Recommend calling flush() after stopping.

• Sweep setup:

sweep_add(entry)
Add a sweep entry to the sweep list

Parameters entry (pyrf.sweepDevice.sweepSettings) –
the sweep entry settings to add to the list

sweep_clear()
Remove all entries from the sweep list.

2.2. Reference 9

API for RF receivers including ThinkRF RTSA platforms

sweep_iterations(count=None)
Set or query the number of iterations to loop through a sweep list.

Parameters count (int) – the number of iterations, 0 for infinite, or
None to query

Returns the current number of iterations if count is None

sweep_read(index)
Read a sweep entry at the given sweep index from the sweep list.

Parameters index – the index of the entry to read
Returns settings of that sweep entry
Return type pyrf.config.SweepEntry

sweep_start(start_id=None)
Start the sweep engine with an optional ID.

Parameters start_id (int) – An optional 32-bit ID to identify the
sweep

sweep_stop()
Stop the sweep engine. Recommend calling flush() after stopping.

• VRT data acquisition related methods:

capture(spp, ppb)
This command will start the single block capture of ppb packets of spp sam-
ples in each packet. The data within a single block capture trace is continuous
from one packet to the other, but not necessary between successive block cap-
ture commands issued. Used for stream or block capture mode. To read data
back, use read() method. See show_i_q.py as an example.

Parameters
• spp (int) – the number of samples in a VRT packet
• ppb (int) – the number of packets in a block of capture

capture_mode()
This command queries the current capture mode

Returns the current capture mode

raw_read(num)
Raw read of VRT socket data of num bytes from the RTSA.

Parameters num (int) – the number of bytes to read
Returns bytes

read()
Read and return a single parsed VRT packet from the RTSA, either context
or data.

read_data(spp)
Read and return a data packet, as well as computed power spectral density
data, of spp (samples per packet) size, the associated context info and the
computed power spetral data. If a block of data is requested (such as ppb is
more than 1), loop through this function to retreive all data. See also data
other capture functions: pyrf.util.capture_spectrum(), pyrf.
capture_device.capture_time_domain()

Parameters spp (int) – the number of samples in a VRT packet
(256 to 65504) in a multiple of 32

Returns data, context dictionary, and power spectral data array

abort()
This command will cause the RTSA to stop the data capturing, whether in the

10 Chapter 2. Table of Contents

https://github.com/pyrf/pyrf/blob/master/examples/show_i_q.py

API for RF receivers including ThinkRF RTSA platforms

manual trace block capture, triggering or sweeping mode. The RTSA will be
put into the manual mode; in other words, process such as streaming, trigger
and sweep will be stopped. The capturing process does not wait until the end
of a packet to stop, it will stop immediately upon receiving the command.

flush()
This command clears the RTSA’s internal data storage buffer of any data
that is waiting to be sent. Thus, it is recommended that the flush command
should be used when switching between different capture modes to clear up
the remnants of captured packets.

eof()
Check if the VRT stream has closed.

Returns True if no more data, False if more data

Device Configuration Methods for Non-Sweep Setup:

attenuator(atten_val=None)
This command enables, disables or queries the RTSA’s RFE attenuation.

Parameters atten_val – see Programmer’s Guide for the attenua-
tion value to use for your product; None to query

Returns the current attenuation value if None is used

decimation(value=None)
This command sets or queries the rate of decimation of samples in a trace cap-
ture. The supported rate is 4 - 1024. When the rate is set to 1, no decimation is
performed on the trace capture.

Parameters value (int) – new decimation value (1 or 4 - 1024);
None to query

Returns the decimation value if None is used

freq(freq=None)
This command sets or queries the tuned center frequency of the RTSA.

Parameters freq (int) – the center frequency in Hz (range vary dep-
nding on the product model); None to query

Returns the frequency in Hz if None is used

fshift(shift=None)
This command sets or queries the frequency shift value.

Parameters freq (int) – the frequency shift in Hz (0 - 125 MHz);
None to query

Returns the amount of frequency shift if None is used

hdr_gain(gain=None)
This command sets or queries the HDR gain of the receiver. The gain has a range
of -10 to 30 dB.

Parameters gain (int) – float between -10 and 30 to set; None to
query

Returns the hdr gain in dB if None is used

iq_output_path(path=None)
This command sets or queries the RTSA’s current IQ path. It is not applicable to
R5700.

2.2. Reference 11

API for RF receivers including ThinkRF RTSA platforms

Parameters path (str) – ‘DIGITIZER’, ‘CONNECTOR’, ‘HIF’, or
None to query

Returns the current IQ output path type if None is used

pll_reference(src=None)
This command sets or queries the RTSA’s PLL reference source

Parameters src (str) – ‘INT’, ‘EXT’, ‘GPS’ (when available with
the model) or None to query

Returns the current PLL reference source if None is used

psfm_gain(gain=None)
This command sets or queries one of the Pre-Select Filter Modules’s (PSFM) gain
stages.

Parameters gain (str) – sets the gain value to ‘high’, ‘medium’,
‘low’, or None to query

Returns the RF gain value if None is used

Usage:

dut.psfm_gain('HIGH')

rfe_mode(mode=None)
This command sets or queries the RTSA’s Receiver Front End (RFE) mode of
operation.

Parameters mode (str) – ‘ZIF’, ‘DD’, ‘HDR’, ‘SHN’, ‘SH’, or None
to query

Returns the current RFE mode if None is used

trigger(settings=None)
This command sets or queries the type of trigger event. Setting the trigger type to
“NONE” is equivalent to disabling the trigger execution; setting to any other type
will enable the trigger engine.

Parameters settings (dictionary) – the new trigger settings;
None to query

Returns the trigger settings if None is used

apply_device_settings(settings, force_change=False)
This command takes a dict of device settings, and applies them to the RTSA

Parameters

• settings (dict) – dict containing device’s settings such as
attenuation, decimation, etc

• force_change (bool) – to force the change update or not

DSP and Data Processing Related Methods:

measure_noisefloor(rbw=None, average=1)
Returns a power level that represents the top edge of the noisefloor

Parameters

• rbw (int) – rbw of spectral capture (Hz) (will round to nearest
native RBW) or None

12 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

• average (int) – number of capture iterations

Returns noise_power

peakfind(n=1, rbw=None, average=1)
Returns frequency and the power level of the maximum spectral point computed
using the current settings, Note this function disables

Parameters

• n (int) – determine the number of peaks to return

• rbw (int) – rbw of spectral capture (Hz) (will round to nearest
native RBW) or None

• average (int) – number of capture iterations

Returns [(peak_freq1, peak_power1), (peak_freq2, peak_power2) , . . . ,
(peak_freqn, peak_powern)]

Data Recording Related Methods:

inject_recording_state(state)
Inject the current RTSA state into the recording stream when the next capture is
received. Replaces previous data if not yet sent.

set_recording_output(output_file=None)
Dump a recording of all the received packets to output_file

Device Discovery Functions:

pyrf.devices.thinkrf.discover_wsa(wait_time=0.125)

pyrf.devices.thinkrf.parse_discovery_response(response)
This function parses the RTSA’s raw discovery response

Parameters response – The RTSA’s raw response to a discovery query

Returns Return (model, serial, firmware version) based on a discovery response mes-
sage

2.2.2 pyrf.connectors

.blocking

class pyrf.connectors.blocking.PlainSocketConnector
This connector makes SCPI/VRT socket connections using plain sockets, of blocking type.

pyrf.connectors.blocking.socketread(socket, count, flags=None)
Retry socket read until count amount of data received, like reading from a file.

Parameters

• count (int) – the amount of data received

• flags – socket.recv() related flags

.twisted_async

class pyrf.connectors.twisted_async.TwistedConnector(reactor,
vrt_callback=None)

A connector that makes SCPI/VRT connections asynchronously using Twisted method.

2.2. Reference 13

API for RF receivers including ThinkRF RTSA platforms

Parameters

• reactor – a twisted reactor, (ex: “from twisted.internet import reactor”)

• vrt_callback (callback) – A callback may be assigned to
vrt_callback that will be called with VRT packets as they arrive. When
vrt_callback is None (the default), arriving packets will be ignored.

exception pyrf.connectors.twisted_async.TwistedConnectorError

class pyrf.connectors.twisted_async.VRTClient(receive_callback)
A Twisted protocol for the VRT connection.

Parameters receive_callback – a function that will be passed a vrt DataPacket
or ContextPacket when it is received

2.2.3 pyrf.capture_device

class pyrf.capture_device.CaptureDevice(real_device, async_callback=None,
device_settings=None)

Virtual device that returns power levels generated from a single data packet

Parameters

• real_device – the device that will be used for capturing data, typically a
pyrf.thinkrf.WSA instance.

• async_callback – callback to use for async operation (not used if
real_device is using a blocking PlainSocketConnector)

• device_settings – initial device settings to use, passed to pyrf.
capture_dvice.CaptureDevice.configure_device() if
given

capture_time_domain(rfe_mode, freq, rbw, device_settings=None, min_points=256,
force_change=False)

Initiate a capture of raw time domain IQ or I-only data

Parameters

• rfe_mode (str) – radio front end mode, e.g. ‘ZIF’, ‘SH’, . . .

• freq (int) – center frequency in Hz to set

• rbw (float) – the resolution bandwidth (RBW) in Hz of the data to be
captured (output RBW may be smaller than requested)

• device_settings (dict or None) – rfe_mode, freq, decima-
tion, fshift and other device settings

• min_points (int) – smallest number of data points per capture from
the device

• force_change (bool) – force the configuration to apply de-
vice_settings changes or not

Returns (fstart, fstop, data) where fstart & fstop are frequencies in Hz & data is
a list

configure_device(device_settings, force_change=False)
Configure the device settings on the next capture

Parameters

14 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

• device_settings (dict) – rfe mode, attenuation, decimation and
other device settings

• force_change (bool) – force the configuration to apply de-
vice_settings changes or not

exception pyrf.capture_device.CaptureDeviceError

2.2.4 pyrf.sweep_device

class pyrf.sweep_device.SweepDevice(real_device, async_callback=None)
Virtual device that generates power spectrum from a given frequency range by sweeping the fre-
quencies with a real device and piecing together the FFT results.

Parameters

• real_device – the RF device that will be used for capturing data, typi-
cally a pyrf.devices.thinkrf.WSA instance.

• async_callback – a callback to use for async operation (not used if
real_device is using a blocking PlainSocketConnector)

capture_power_spectrum(fstart, fstop, rbw, device_settings=None, mode=’SH’,
continuous=False)

Initiate a data capture from the real_device by setting up a sweep list and starting a single
sweep, and then return power spectral density data along with the actual sweep start and stop
frequencies set (which might not be exactly the same as the requested fstart and fstop).

Note: This function does not pipeline, and if the last sweep isn’t received before starting a
new one, it will generate a failure.

Parameters

• fstart (int) – sweep starting frequency in Hz

• fstop (int) – sweep ending frequency in Hz

• rbw (float) – the resolution bandwidth (RBW) in Hz of the data to be
captured (output RBW may be smaller than requested)

• device_settings (dict) – attenuation and other device settings

• mode (str) – sweep mode, ‘ZIF’, ‘SH’, or ‘SHN’

• continuous (bool) – set sweep to be continuously or not (once only)

Returns fstart, fstop, power_data

exception pyrf.sweep_device.SweepDeviceError
Exception for the sweep device to state an error() has occured

class pyrf.sweep_device.SweepPlanner(dev_prop)
An object that plans a sweep based on given paramaters.

Parameters dev_prop (dict) – the sweep device properties

class pyrf.sweep_device.SweepSettings
An object used to keep track of the sweep settings

2.2. Reference 15

API for RF receivers including ThinkRF RTSA platforms

2.2.5 pyrf.config

class pyrf.config.SweepEntry(fstart=2400000000, fstop=2400000000,
fstep=100000000, fshift=0, decimation=0,
gain=’vlow’, ifgain=0, hdr_gain=-10, spp=1024,
ppb=1, trigtype=’none’, dwell_s=0, dwell_us=0,
level_fstart=50000000, level_fstop=10000000000,
level_amplitude=-100, attenuator=30,
rfe_mode=’SH’)

Sweep entry setup for pyrf.devices.thinkrf.WSA.sweep_add()

Parameters

• fstart (int) – starting frequency in Hz

• fstop (int) – ending frequency in Hz

• fstep (int) – frequency step in Hz

• fshift (int) – the frequency shift in Hz

• decimation (int) – the decimation value (0 or 4 - 1023)

• gain (str) – the RF gain value (‘high’, ‘medium’, ‘low’ or ‘vlow’)

• ifgain (int) – the IF gain in dB (-10 - 34)

Note: parameter is deprecated, kept for a legacy device

• hdr_gain (int) – the HDR gain in dB (-10 - 30)

• spp (int) – samples per packet (256 - max, a multiple of 32) that fit in one
VRT packet

• ppb (int) – data packets per block

• dwell_s (int) – dwell time seconds

• dwell_us (int) – dwell time microseconds

• trigtype (str) – trigger type (‘none’, ‘pulse’ or ‘level’)

• level_fstart (int) – level trigger starting frequency in Hz

• level_fstop (int) – level trigger ending frequency in Hz

• level_amplitude (float) – level trigger minimum in dBm

• attenuator – vary depending on the product

• rfe_mode (str) – RFE mode to be used, such as ‘SH’, ‘SHN’, ‘DD’, etc.

Returns a string list of the sweep entry’s settings

class pyrf.config.TriggerSettings(trigtype=’NONE’, fstart=None, fstop=None,
amplitude=None)

Trigger settings for pyrf.devices.thinkrf.WSA.trigger().

Parameters

• trigtype (str) – “LEVEL”, “PULSE”, or “NONE” to disable

• fstart (int) – trigger starting frequency in Hz

• fstop (int) – trigger ending frequency in Hz

16 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

• amplitude (float) – minimum level for trigger in dBm

Returns a string in the format: TriggerSettings(trigger type, fstart, fstop, amplitude)

exception pyrf.config.TriggerSettingsError
Exception for the trigger settings to state an error() has occured

2.2.6 pyrf.numpy_util

pyrf.numpy_util.calculate_channel_power(power_spectrum)
Return a dBm value representing the channel power of the input power spectrum.

Parameters power_spectrum (list) – an array containing the power spectrum
to be used for the channel power calculation

Returns the channel power result

pyrf.numpy_util.calculate_occupied_bw(pow_data, span, occupied_perc)
Return the occupied bandwidth of a given spectrum, and occupied percentage

Parameters

• pow_data (list) – spectral data to be analyzed

• span (int) – span of the given spectrum, in Hz

• occupied_perc (float) – Percentage of the power to be measured

Returns float value of the occupied bandwidth

pyrf.numpy_util.calibrate_time_domain(power_spectrum, data_pkt)
Return a list of the calibrated time domain data

Parameters

• power_spectrum (list) – spectral data of the time domain data

• data_pkt (pyrf.vrt.DataPacket) – a RTSA VRT data packet

Returns a list containing the calibrated time domain data

pyrf.numpy_util.compute_fft(dut, data_pkt, context, cor-
rect_phase=True, iq_correction_wideband=True,
hide_differential_dc_offset=True, con-
vert_to_dbm=True, apply_window=True, ap-
ply_spec_inv=True, apply_reference=True, ref=None,
decimation=1)

Return an array of dBm values by computing the FFT of the passed data and reference level.

Parameters

• dut (pyrf.devices.thinkrf.WSA) – WSA device

• data_pkt (pyrf.vrt.DataPacket) – packet containing samples

• context (dict) – context values, such as ‘bandwidth’, ‘reflevel’, etc.

• correct_phase (bool) – apply phase correction for captures with IQ
data or not

• iq_correction_wideband (bool) – apply wideband IQ correction or
not

• hide_differential_dc_offset (bool) – mask the differential DC
offset present in captures with IQ data or not

2.2. Reference 17

API for RF receivers including ThinkRF RTSA platforms

• convert_to_dbm (bool) – convert the output values to dBm or not

• apply_window (bool) – apply windowing to FFT function or not

• apply_spec_inv (bool) – apply spectral inversion to the FFT bin or
not. Recommend to leave as default

• apply_reference (bool) – apply reference level correction or not

• ref (float) – a reference value to apply to the noise level

• decimation (int) – the decimation value (1, 4 - 1024)

Returns numpy array of spectral data in dBm, as floats

2.2.7 pyrf.util

pyrf.util.capture_spectrum(dut, rbw=None, average=1, dec=1, fshift=0)
Returns the spectral data, and the usable start and stop frequencies corresponding to the RTSA’s
current configuration

Parameters

• rbw (int) – rbw of spectral capture (Hz) (will round to nearest native RBW)

• average (int) – number of capture iterations

• dec (int) – decimation factor applied

• fshift (int) – the fshift applied, in Hz

Returns (fstart, fstop, pow_data) where pow_data is a list

pyrf.util.read_data_and_context(dut, points=1024)
Initiate capture of one VRT data packet, wait for and return data packet and collect preceeding
context packets.

Parameters points (int) – Number of data points to capture

Returns (data_pkt, context_values)

Where context_values is a dict of {field_name: value} items from all the context packets received.

2.2.8 pyrf.vrt

class pyrf.vrt.ContextPacket(packet_type, count, size, tmpstr, has_timestamp)
A Context Packet received from pyrf.devices.thinkrf.WSA.read(). See VRT section
of the product’s Programmer’s Guide for more information.

Parameters

• packet_type – VRT packet type

• count – VRT packet counter (see VRT protocol)

• size (int) – The VRT packet size, less headers and trailer words

• tmpstr – hold the raw data for parsing

• has_timestamp (bool) – to indicate timestamp is available with the
packet

fields
a dict containing field names and values from the packet

18 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

is_context_packet(ptype=None)

Parameters ptype (str) – “Receiver”, “Digitizer” or None for any packet type

Returns True if this packet matches the ptype passed

is_data_packet()
To indicate this VRT packet is not of data type as it’s a ContextPacket

Returns False

class pyrf.vrt.DataPacket(count, size, stream_id, tsi, tsf, payload, trailer)
A Data Packet received from pyrf.devices.thinkrf.WSA.read()

data
a pyrf.vrt.IQData object containing the packet data

is_context_packet(ptype=None)

Returns False

is_data_packet()

Returns True

class pyrf.vrt.IQData(binary_data)
Data Packet values as a lazy collection of (I, Q) tuples read from binary_data.

This object behaves as an immutable python sequence, e.g. you may do any of the following:

points = len(iq_data)

i_and_q = iq_data[5]

for i, q in iq_data:
print i, q

numpy_array()
Return a numpy array of I, Q values for this data

exception pyrf.vrt.InvalidDataReceived

pyrf.vrt.vrt_packet_reader(raw_read)
Read a VRT packet, parse it and return an object with its data.

Implemented as a generator that yields the result of the passed raw_read function and accepts the
value sent as its data.

Parameters raw_read (list) – VRT packet of raw data (bytes)

2.3 Examples

This section explains some of the examples included with the PyRF source code.

Typical Usage:

python <example_file>.py [device_IP_when_needed]

2.3. Examples 19

https://github.com/pyrf/pyrf/blob/master/examples/

API for RF receivers including ThinkRF RTSA platforms

2.3.1 discovery.py / twisted_discovery.py

• discovery.py

• twisted_discovery.py

These examples detect RTSA devices on the local network.

Example output:

R5700-427 180601-661 1.5.0 10.126.110.133
R5500-408 171212-007 1.5.0 10.126.110.123
R5500-418 180522-659 1.4.8 10.126.110.104

2.3.2 show_i_q.py / twisted_show_i_q.py

These examples connect to a device of IP specified on the command line, tunes it to a center frequency of
2.450 MHz then reads and displays one capture of 1024 i, q values.

• show_i_q.py

• twisted_show_i_q.py

Example output (truncated):

0,-20
-8,-16
0,-24
-8,-12
0,-32
24,-24
32,-16
-12,-24
-20,0
12,-32
32,-4
0,12
-20,-16
-48,16
-12,12
0,-36
4,-12

2.3.3 pyqtgraph_plot_single_capture.py / pyqtgraph_plot_block.py

These examples connect to a device of IP specified on the command line, tunes it to a center frequency,
then continually capture and display the computed spectral data using pyqtgraph.

• pyqtgraph_plot_single_capture.py

• pyqtgraph_plot_block.py

2.3.4 pyqtgraph_plot_sweep.py

This example connects to a device of IP specified on the command line, makes use of sweep_device.py to
perform a single sweep entry monitoring and plots computed spectral results using pyqtgraph.

20 Chapter 2. Table of Contents

https://github.com/pyrf/pyrf/blob/master/examples/discovery.py
https://github.com/pyrf/pyrf/blob/master/examples/twisted_discovery.py
https://github.com/pyrf/pyrf/blob/master/examples/show_i_q.py
https://github.com/pyrf/pyrf/blob/master/examples/twisted_show_i_q.py
http://pyqtgraph.org/
https://github.com/pyrf/pyrf/blob/master/examples/pyqtgraph_plot_single_capture.py
https://github.com/pyrf/pyrf/blob/master/examples/pyqtgraph_plot_block.py
http://pyqtgraph.org/

API for RF receivers including ThinkRF RTSA platforms

• pyqtgraph_plot_sweep.py

2.3.5 matplotlib_plot_sweep.py

This example connects to a device specified on the command line, and plots a large sweep of the spectrum
using NumPy and matplotlib.

• matplotlib_plot_sweep.py

2.3.6 simple_gui

This folder contains a simple example on creating a GUI (using pyqtgraph along with Twisted) to plot
real-time data acquired from ThinkRF’s RTSA device. It displays the spectral density data in the top plot,
and the raw I &/or Q data (when available) in the lower plot.

• simple_gui

Usage:

python run_gui.py <device_ip>

2.4 Change Logs

2.4.1 PyRF 2.9.1

• Updated this PyRF Manual/Documentation

• Added more examples

2.4.2 PyRF 2.9.0

2018-10-12

• Added GNSS support for R5700 RTSA products including VRT GNSS context packet

• Added support for R5500 products

• Added flush and reset to capture setup

• Added calibrate_time_domain() function for a given time-domain data point

• Added calculate_occupied_bw() function for a given spectrum and occupied percentage

• Refactored sweep_device functions

• Restructured ThinkRF device properties and removed deprecated ones

• Improved IQ offset algorithm

• Enabled “100 kHz span” (HDR mode) for R5500 products

• Enabled trigger feature

• Changed Baseband (DD mode)’s MIN_TUNABLE to 32.25 MHz

• Changed R5500’s minimum frequency to 10 kHz

• Changed WSA5000’s minimum frequency to 100 kHz

2.4. Change Logs 21

https://github.com/pyrf/pyrf/blob/master/examples/pyqtgraph_plot_sweep.py
http://numpy.scipy.org/
http://matplotlib.org/
https://github.com/pyrf/pyrf/blob/master/examples/matplotlib_plot_sweep.py
http://pyqtgraph.org/
https://twistedmatrix.com/
https://github.com/pyrf/pyrf/blob/master/examples/example_gui/

API for RF receivers including ThinkRF RTSA platforms

• Changed minimum sample size for sweep to be 32

• Fixed zero-span setting

• Fixed bugs related to RBW setup

• Fixed bugs related sweep setup

• Fixed lock-up issue due to unexpected data packet received

• Fixed attenuation setting for R5500

• Fixed sample sizes being off by 32 samples

• Fixed capture_device bug related to number of data points

• Fixed bugs related to CSV file and settings

2.4.3 PyRF 2.8.0

2015-08-12

• Removed RTSA Instructions from the web page

• Fixed windows installation instructions

• Added capture spectrum function

• Added find peak function

• Added Measure noisefloor function

• Changed default span settings

• Added saturation level value for each device

2.4.4 PyRF 2.7.2

2014-12-16

• Added capture control widget

• Changed default save file names to represent date and time of capture

• Fixed baseband mode frequency axis issue

• Netifaces library is no longer a hard requirement

• Improved overall marker controls

• Added ‘Enable mouse tune’ option to frequency widget

• Default HDR gain is now 25

2.4.5 PyRF 2.7.1

2014-11-13

• Discovery widget now queries for new WSA’s on the network every 10 seconds

• Fixed issue where switching from sweep to non-sweep wrongly changed center frequency

• Fixed issue where Minimum control not behaving as designed

22 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

• Fixed issue where trigger controls were not disabled for non-trigger modes

• Fixed frequency axis texts

• Y-axis in the persistence plot now corresponds with spectral plot’s y-axis

2.4.6 PyRF 2.7.0

2014-11-04

• All control widgets are now dockable

• Enabled mouse control of spectral plot’s y-axis

• Added lower RBW values in non-sweep modes

2.4.7 PyRF 2.6.2

2014-10-10

• HDR gain control in GUI now allows values up to +20 dB

• Sweep ZIF (100 MHz steps) now only shown in GUI when developer menu is enabled

• GUI PLL Reference control now works in Sweep mode

• Darkened trace color in GUI for attenuated edges and dc offset now matches trace color

• Alternate sweep step color in GUI now matches trace color

• DC offset region now limited to middle three bins in GUI (was expanding when decimation was
applied)

• Correction to usable region in ZIF and SH modes with decimation applied

• Fixed HDR center offset value

• Added device information dialog to GUI

2.4.8 PyRF 2.6.1

2014-09-30

• Upload corrected version with changelog

2.4.9 PyRF 2.6.0

2014-09-30

• Added channel power measurement feature to GUI

• Added Export to CSV feature to GUI for saving streams of processed power spectrum data

• Added a power level cursor (adjustable horizontal line) to GUI

• Added reference level offset adjustment box to GUI

• Trigger region in GUI is now a rectangle to make it visibly different than channel power measure-
ment controls

2.4. Change Logs 23

API for RF receivers including ThinkRF RTSA platforms

• Update mode drop-down in GUI to include information about each mode instead of showing inter-
nal mode names

• Use netifaces for address detection to fix discover issue on non-English windows machines

2.4.10 PyRF 2.5.0

2014-09-09

• Added Persistence plot

• Made markers drag-able in the plot

• Added version number to title bar

• Moved DSP options to developer menu, developer menu now hidden unless GUI run with -d option

• Rounded center to nearest tuning resolution step in GUI

• Fixed a number of GUI control and label issues

• Moved changelog into docs and updated

2.4.11 PyRF 2.4.1

2014-08-19

• Added missing requirement

• Fixed use with CONNECTOR IQ path

2.4.12 PyRF 2.4.0

2014-08-19

• Improved trigger controls

• Fixed modes available with some WSA versions

2.4.13 PyRF 2.3.0

2014-08-12

• Added full playback support (including sweep) in GUI

• Added hdr_gain control to WSA class

• Added average mode and clear button for traces

• Added handling for different REFLEVEL_ERROR on early firmware versions

• Disable triggers for unsupported WSA firmware versions

• Added free plot adjustment developer option

• Fixed a number of GUI interface issues

24 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

2.4.14 PyRF 2.2.0

2014-07-15

• Added waterfall display for GUI and example program

• Added automatic re-tuning when plot dragged of zoomed

• Added recording speca state in recorded VRT files, Start/Stop recording menu

• Added GUI non-sweep playback support and command line ‘-p’ option

• Added marker controls: peak left, right, center to marker

• Redesigned frequency controls, device controls and trace controls

• Default to Sweep SH mode in GUI

• Added developer options menu for attenuated edges etc.

• Refactored shared GUI code and panels

• SweepDevice now returns numpy arrays of dBm values

• Fixed device discovery with multiple interfaces

• Replaced reflevel adjustment properties with REFLEVEL_ERROR value

• Renamed GUI launcher to rtsa-gui

2.4.15 PyRF 2.1.0

2014-06-20

• Refactored GUI code to separate out device control and state

• Added SPECA defaults to device properties

• Restored trigger controls in GUI

• Added DSP panel to control fft calculations in GUI

• Fixed a number of GUI plot issues

2.4.16 PyRF 2.0.3

2014-06-03

• Added simple QT GUI example with frequency, attenuation and rbw controls

• Added support for more hardware versions

• Fixed plotting issues in a number of modes in GUI

2.4.17 PyRF 2.0.2

2014-04-29

• Removed Sweep ZIF mode from GUI

• Fixed RFE input mode GUI issues

2.4. Change Logs 25

API for RF receivers including ThinkRF RTSA platforms

2.4.18 PyRF 2.0.1

2014-04-21

• Added Sweep SH mode support to SweepDevice

• Added IQ in, DD, SHN RFE modes to GUI

• Added IQ output path and PLL reference controls to GUI

• Added discovery widget to GUI for finding devices

• Fixed a number of issues

2.4.19 PyRF 2.0.0

2014-01-31

• Added multiple traces and trace controls to GUI

• Added constellation and IQ plots

• Added raw VRT capture-to-file support

• Updated SweepDevice sweep plan calculation

• Created separate GUI for single capture modes

• Updated device properties for WSA5000 RFE modes

• Show attenuated edges in gray, sweep steps in different colors in GUI

• Added decimation and frequency shift controls to single capture GUI

• Fixed many issues with WSA5000 different RFE mode support

• Removed trigger controls, waiting for hardware support

• Switched to using pyinstaller for better windows build support

2.4.20 PyRF 1.2.0

2013-10-01

• Added WSA5000 support

• Added WSA discovery example scripts

• Renamed WSA4000 class to WSA (supports WSA5000 as well)

• Separated device properties from WSA class

2.4.21 PyRF 1.1.0

2013-07-19

• Fixed some py2exe issues

• Show the GUI even when not connected

26 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

2.4.22 PyRF 1.0.0

2013-07-18

• Switched to pyqtgraph for spectrum plot

• Added trigger controls

• Added markers

• Added hotkeys for control

• Added bandwidth control

• Renamed GUI launcher speca-gui

• Created SweepDevice to generalize spectrum analyzer-type function

• Created CaptureDevice to collect single captures and related context

2.4.23 PyRF 0.4.0

2013-05-18

• pyrf.connectors.twisted_async.TwistedConnector now has a vrt_callback attribute for setting a
function to call when VRT packets are received.

This new callback takes a single parameter: a pyrf.vrt.DataPacket or pyrf.vrt.ContextPacket in-
stance.

The old method of emulating a synchronous read() interface from a
pyrf.devices.thinkrf.WSA4000 instance is no longer supported, and will now raise a
pyrf.connectors.twisted_async.TwistedConnectorError exception.

• New methods added to pyrf.devices.thinkrf.WSA4000: abort(), spp(), ppb(), stream_start(),
stream_stop(), stream_status()

• Added support for stream ID context packets and provide a value for sweep ID context packet not
converted to a hex string

• wsa4000gui updated to use vrt callback

• “wsa4000gui -v” enables verbose mode which currently shows SCPI commands sent and responses
received on stdout

• Added examples/stream.py example for testing stream data rate

• Updated examples/twisted_show_i_q.py for new vrt_callback

• Removed pyrf.twisted_util module which implemented old synchronous read() interface

• Removed now unused pyrf.connectors.twisted_async.VRTTooMuchData exception

• Removed wsa4000gui-blocking script

• Fix for power spectrum calculation in pyrf.numpy_util

2.4.24 PyRF 0.3.0

2013-02-01

• API now allows asynchronous use with TwistedConnector

2.4. Change Logs 27

API for RF receivers including ThinkRF RTSA platforms

• GUI now uses asynchronous mode, but synchronous version may still be built as wsa4000gui-
blocking

• GUI moved from examples to inside the package at pyrf.gui and built from the same setup.py

• add Twisted version of show_i_q.py example

• documentation: installation instructions, requirements, py2exe instructions, user manual and many
other changes

• fix support for reading WSA4000 very low frequency range

• pyrf.util.read_data_and_reflevel() was renamed to read_data_and_context()

• pyrf.util.socketread() was moved to pyrf.connectors.blocking.socketread()

• added requirements.txt for building dependencies from source

2.4.25 PyRF 0.2.5

2013-01-26

• fix for compute_fft calculations

2.4.26 PyRF 0.2.4

2013-01-19

• fix for missing devices file in setup.py

2.4.27 PyRF 0.2.3

2013-01-19

• add planned features to docs

2.4.28 PyRF 0.2.2

2013-01-17

• rename package from python-thinkrf to PyRF

2.4.29 python-thinkrf 0.2.1

2012-12-21

• update for WSA4000 firmware 2.5.3 decimation change

2.4.30 python-thinkrf 0.2.0

2012-12-09

• GUI: add BPF toggle, Antenna switching, –reset option, “Open Device” dialog, IF Gain control,
Span control, RBW control, update freq on finished editing

• create basic documentation and reference and improve docstrings

28 Chapter 2. Table of Contents

API for RF receivers including ThinkRF RTSA platforms

• bug fixes for GUI, py2exe setup.py

• GUI perfomance improvements

2.4.31 python-thinkrf 0.1.0

2012-12-01

• initial release

2.4. Change Logs 29

API for RF receivers including ThinkRF RTSA platforms

30 Chapter 2. Table of Contents

CHAPTER 3

Hardware Support

This library currently supports development for the following ThinkRF Real-Time Spectrum Analyzer (RTSA) plat-
forms:

• R5500

• R5700

• WSA5000 (EOL)

31

https://www.thinkrf.com

API for RF receivers including ThinkRF RTSA platforms

32 Chapter 3. Hardware Support

CHAPTER 4

Links

• Official PyRF github page

• PyRF Documentation

• ThinkRF RTSA Documentation and Resources

33

https://github.com/pyrf/pyrf
https://www.pyrf.org
https://www.thinkrf.com/resources

API for RF receivers including ThinkRF RTSA platforms

34 Chapter 4. Links

CHAPTER 5

Indices and Tables

• genindex

• search

35

API for RF receivers including ThinkRF RTSA platforms

36 Chapter 5. Indices and Tables

Python Module Index

p
pyrf.capture_device, 14
pyrf.config, 16
pyrf.connectors.blocking, 13
pyrf.connectors.twisted_async, 13
pyrf.devices.thinkrf, 7
pyrf.numpy_util, 17
pyrf.sweep_device, 15
pyrf.util, 18
pyrf.vrt, 18

37

API for RF receivers including ThinkRF RTSA platforms

38 Python Module Index

Index

A
abort() (pyrf.devices.thinkrf.WSA method), 10
apply_device_settings() (pyrf.devices.thinkrf.WSA

method), 12
async_connector() (pyrf.devices.thinkrf.WSA method), 8
attenuator() (pyrf.devices.thinkrf.WSA method), 11

C
calculate_channel_power() (in module pyrf.numpy_util),

17
calculate_occupied_bw() (in module pyrf.numpy_util),

17
calibrate_time_domain() (in module pyrf.numpy_util), 17
capture() (pyrf.devices.thinkrf.WSA method), 10
capture_mode() (pyrf.devices.thinkrf.WSA method), 10
capture_power_spectrum()

(pyrf.sweep_device.SweepDevice method),
15

capture_spectrum() (in module pyrf.util), 18
capture_time_domain() (pyrf.capture_device.CaptureDevice

method), 14
CaptureDevice (class in pyrf.capture_device), 14
CaptureDeviceError, 15
compute_fft() (in module pyrf.numpy_util), 17
configure_device() (pyrf.capture_device.CaptureDevice

method), 14
connect() (pyrf.devices.thinkrf.WSA method), 8
ContextPacket (class in pyrf.vrt), 18

D
data (pyrf.vrt.DataPacket attribute), 19
DataPacket (class in pyrf.vrt), 19
decimation() (pyrf.devices.thinkrf.WSA method), 11
disconnect() (pyrf.devices.thinkrf.WSA method), 8
discover_wsa() (in module pyrf.devices.thinkrf), 13

E
eof() (pyrf.devices.thinkrf.WSA method), 11
errors() (pyrf.devices.thinkrf.WSA method), 8

F
fields (pyrf.vrt.ContextPacket attribute), 18
flush() (pyrf.devices.thinkrf.WSA method), 11
freq() (pyrf.devices.thinkrf.WSA method), 11
fshift() (pyrf.devices.thinkrf.WSA method), 11

H
has_data() (pyrf.devices.thinkrf.WSA method), 8
have_read_perm() (pyrf.devices.thinkrf.WSA method), 9
hdr_gain() (pyrf.devices.thinkrf.WSA method), 11

I
id() (pyrf.devices.thinkrf.WSA method), 8
inject_recording_state() (pyrf.devices.thinkrf.WSA

method), 13
InvalidDataReceived, 19
iq_output_path() (pyrf.devices.thinkrf.WSA method), 11
IQData (class in pyrf.vrt), 19
is_context_packet() (pyrf.vrt.ContextPacket method), 19
is_context_packet() (pyrf.vrt.DataPacket method), 19
is_data_packet() (pyrf.vrt.ContextPacket method), 19
is_data_packet() (pyrf.vrt.DataPacket method), 19

L
locked() (pyrf.devices.thinkrf.WSA method), 8

M
measure_noisefloor() (pyrf.devices.thinkrf.WSA

method), 12

N
numpy_array() (pyrf.vrt.IQData method), 19

P
parse_discovery_response() (in module

pyrf.devices.thinkrf), 13
peakfind() (pyrf.devices.thinkrf.WSA method), 13
PlainSocketConnector (class in

pyrf.connectors.blocking), 13

39

API for RF receivers including ThinkRF RTSA platforms

pll_reference() (pyrf.devices.thinkrf.WSA method), 12
ppb() (pyrf.devices.thinkrf.WSA method), 9
psfm_gain() (pyrf.devices.thinkrf.WSA method), 12
pyrf.capture_device (module), 14
pyrf.config (module), 16
pyrf.connectors.blocking (module), 13
pyrf.connectors.twisted_async (module), 13
pyrf.devices.thinkrf (module), 7
pyrf.numpy_util (module), 17
pyrf.sweep_device (module), 15
pyrf.util (module), 18
pyrf.vrt (module), 18

R
raw_read() (pyrf.devices.thinkrf.WSA method), 10
read() (pyrf.devices.thinkrf.WSA method), 10
read_data() (pyrf.devices.thinkrf.WSA method), 10
read_data_and_context() (in module pyrf.util), 18
request_read_perm() (pyrf.devices.thinkrf.WSA method),

9
reset() (pyrf.devices.thinkrf.WSA method), 8
rfe_mode() (pyrf.devices.thinkrf.WSA method), 12

S
scpiget() (pyrf.devices.thinkrf.WSA method), 8
scpiset() (pyrf.devices.thinkrf.WSA method), 8
set_async_callback() (pyrf.devices.thinkrf.WSA

method), 8
set_recording_output() (pyrf.devices.thinkrf.WSA

method), 13
socketread() (in module pyrf.connectors.blocking), 13
spp() (pyrf.devices.thinkrf.WSA method), 9
stream_start() (pyrf.devices.thinkrf.WSA method), 9
stream_status() (pyrf.devices.thinkrf.WSA method), 9
stream_stop() (pyrf.devices.thinkrf.WSA method), 9
sweep_add() (pyrf.devices.thinkrf.WSA method), 9
sweep_clear() (pyrf.devices.thinkrf.WSA method), 9
sweep_iterations() (pyrf.devices.thinkrf.WSA method), 9
sweep_read() (pyrf.devices.thinkrf.WSA method), 10
sweep_start() (pyrf.devices.thinkrf.WSA method), 10
sweep_stop() (pyrf.devices.thinkrf.WSA method), 10
SweepDevice (class in pyrf.sweep_device), 15
SweepDeviceError, 15
SweepEntry (class in pyrf.config), 16
SweepPlanner (class in pyrf.sweep_device), 15
SweepSettings (class in pyrf.sweep_device), 15

T
trigger() (pyrf.devices.thinkrf.WSA method), 12
TriggerSettings (class in pyrf.config), 16
TriggerSettingsError, 17
TwistedConnector (class in

pyrf.connectors.twisted_async), 13
TwistedConnectorError, 14

V
vrt_packet_reader() (in module pyrf.vrt), 19
VRTClient (class in pyrf.connectors.twisted_async), 14

W
WSA (class in pyrf.devices.thinkrf), 7

40 Index

	Overview
	Table of Contents
	Manual
	Reference
	Examples
	Change Logs

	Hardware Support
	Links
	Indices and Tables
	Python Module Index

